Biotechnology: The key to zero energy buildings
Contents |
[edit] Introduction
A joint venture was established in August 2019 between Newcastle University and Northumbria University to explore how to use biotechnology to create zero-energy buildings. Ben Bridgens of Newcastle University reports.
[edit] Nature's connection to construction
For nearly 200 years the Institution of Civil Engineers’ charter had defined the profession as, ‘the art of directing the great sources of power in nature for the use and convenience of man’.
In practice this has meant using vast quantities of energy and primarily fossil fuels, to extract and process materials from the ground to create the steel, concrete, brick and cement from which the majority of buildings and infrastructure are constructed.
Such buildings are energy intensive to heat and cold and are made from inert materials which do not respond to the dynamic climatic conditions and require maintenance to ensure their continued functioning.
In reality the great sources of power in nature are abundant energy from the sun, photosynthesis, growth, reproduction, evolution, adaptation and symbiotic ecosystems − complex interacting systems which share nutrients and energy. So, rather than trying to use energy-intensive industrial processes to create zero-energy buildings and infrastructure, civil engineers should consider harnessing the power of nature using biotechnology.
[edit] New biotechnology hub
The Hub for Biotechnology in the Built Environment (HBBE) is a new joint initiative between Newcastle University and Northumbria University. It was set up in August 2019 with £8 million funding from Research England.
HBBE sees huge untapped potential in biotechnology to change the way the built environment is constructed, operated and maintained. Its initial work will focus on the use of microorganisms across three main areas: living construction, building metabolisms and microbial environment.
Living construction means growing construction materials using microbes and fungus. This will involve research into microbially synthesised mineral crystals to replace cement, bacterial production of cellulose fibres and bioplastics, and bacterial spore-based materials which change shape in response to water.
Such materials have the potential to go beyond simply replacing existing construction materials with environmentally benign alternatives, to adding new functionality including self-healing materials and responsive materials which adapt to the internal or external environment.
[edit] Metabolisms and microbiomes
Building metabolism research involves developing new microbial technologies which operate rather like a building’s stomach, processing the occupants’ waste and generating energy and other useful products. Technologies will range from small-scale bioreactors for micro-generation of electricity from human waste, production of nutrients for growing food from human and food waste, and development of enzymes which can degrade plastics to create valuable products within the home.
HBBE will also investigate ways in which people might live in greater harmony with environmental microbes and viruses in a healthy ‘microbiome’. New types of biological sensing systems could enable creation of probiotic materials, surfaces and ventilation systems to promote ‘good bacteria’ within buildings.
[edit] Full-scale implementation
Many of the individual technologies are already being developed by researchers at laboratory scale. HBBE will work across scales and disciplines, from nano-scale manipulation of genetic information through to developing prototypes, which will involve collaboration between biologists, engineers and architects, all the way to full-scale implementation and testing within an experimental house.
While each of the technologies could be beneficial in its own right, the truly transformative potential will come from developing them together by considering the building and its materials, systems and occupants as a symbiotic system, with ‘waste’ from one process providing ‘food’ for another, to achieve self-sufficient, durable, healthy buildings for the future.
This article is based on an update of the authors’ briefing article in the 173 CE1 issue of the ICE Civil Engineering journal. It was published on 2 April 2020 on The ICE Civil Engineer Blog and written by Ben Bridgens, Senior Lecturer in Architectural Technology, Newcastle University.
--The Institution of Civil Engineers
[edit] Related articles on Designing Buildings Wiki
Featured articles and news
Mixed reactions to apprenticeship and skills reform 2025
A 'welcome shift' for some and a 'backwards step' for others.
Licensing construction in the UK
As the latest report and proposal to licence builders reaches Parliament.
Building Safety Alliance golden thread guidance
Extensive excel checklist of information with guidance document freely accessible.
Fair Payment Code and other payment initiatives
For fair and late payments, need to work together to add value.
Pre-planning delivery programmes and delay penalties
Proposed for housebuilders in government reform: Speeding Up Build Out.
High street health: converting a building for healthcare uses
The benefits of health centres acting as new anchor sites in the high street.
The Remarkable Pinwill Sisters: from ‘lady woodcarvers’ to professionals. Book review.
Skills gap and investment returns on apprenticeships
ECA welcomes new reports from JTL Training and The Electrotechnical Skills Partnership.
Committee report criticises UK retrofit schemes
CIOB responds to UK’s Energy Security and Net Zero Committee report.
Design and construction industry podcasts
Professional development, practice, the pandemic, platforms and podcasts. Have we missed anything?
C20 Society; Buildings at Risk List 2025
10 more buildings published with updates on the past decade of buildings featured.
Boiler Upgrade Scheme and certifications consultation
Summary of government consultation, closing 11 June 2025.
Deputy editor of AT, Tim Fraser, discusses the newly formed society with its current chair, Chris Halligan MCIAT.
Barratt Lo-E passivhaus standard homes planned enmasse
With an initial 728 Lo-E homes across two sites and many more planned for the future.
Government urged to uphold Warm Homes commitment
ECA and industry bodies write to Government concerning its 13.2 billion Warm Homes manifesto commitment.
From project managers to rising stars, sustainability pioneers and more.
Places of Worship in Britain and Ireland, 1929-1990. Book review.